외적

에 마지막으로 수정됐습니다.

1. 개요2. 벡터곱
2.1. 정의
3. 외적

1. 개요[편집]

외적(外積)은 두 벡터의 곱에 관한 수학적 용어이다. 우리나라에서는 두 가지의 다른 개념을 외적이라는 말을 사용하고 있다. 고등학교 과정에서는 2번 항목의 Cross Product 의미로 외적을 사용하며, 둘을 혼동하는 경우가 많다. 그래서 외적이라는 용어를 보면 우선 어느 뜻으로 사용된 것인지 확실히 확인하는 게 좋다.

수식 표기로는 둘을 쉽게 구분할 수 있다. 벡터곱은 x×y\mathbf{x} \times \mathbf{y}로 표기하는 반면 외적은 xy\mathbf{x} \otimes \mathbf{y}로 표기한다.

영문명인 Cross Product를 직역해 '가위곱'이라고도 하거나, 절반만 번역해서 '크로스곱'이라고 하는 경우도 많다. 아니면 연산 결과 다시 벡터가 나온다는 점을 이용해 '벡터곱'이라고도 부른다.

2. 벡터곱[편집]

벡터곱(Cross product)은 3차원 유클리드 공간에서 정의된 쌍선형 함수의 일종이다. 현행 고교 교육과정 기준으로 교과서에 포함되어 있지는 않으나 보습학원에서 코시-슈바르츠 부등식 등과 더불어 교과외 과정으로서 배우는 경우가 많다. 스칼라곱과는 달리 결과값은 벡터가 된다. 두 벡터 aa, bb의 벡터곱 a×ba \times b의 크기는 absinθ |a| |b|\sin \theta이고(θ\thetaaa, bb가 이루는 각의 크기), 방향은 aa, bb에 모두 수직이다.

유클리드 공간에서의 내적에 해당하는 '스칼라곱'을 단순히 '내적'이라고만 부르는 경우가 많고, 이것과 대조적이라는 의미로 벡터곱을 '외적'이라고 칭하는 경우가 많은데 혼동하기 쉬운 개념이기에 주의가 필요하다.

외적은 주로 토크각운동량 같이 회전에 관계된 물리량을 측정할 때 사용한다. 예를 들면 토크의 크기는 고정점에 대한 작용점의 변위 벡터를 r, 작용점에 작용하는 힘 벡터를 F라고 놓을 때 τ=r×F \tau = r \times F 와 같이 정의된다.

여담으로 3차원 벡터곱은 사원수의 허수부의 곱으로 유도될 수 있으며, 마찬가지로 팔원수의 허수부의 곱을 통해서 7차원 공간에서의 벡터곱도 정의할 수 있다.[1] 하지만, 그 이상까지 올라가면 16원수에서 유도되는 15차원으로 올라가게 되는데, 팔원수부터 대수적 성질을 대폭 잃어버린 상태[2]이기 때문에 15차원 이후의 벡터곱은 정의하지 않는다. 무엇보다도, 16원수 이상으로 올라가게 되면 제곱수 항등식[3][4][5]이 성립하지 않는다는 것이 증명되어 있기 때문에, ab=ab \lVert a\cdot b \rVert= \lVert a \rVert \cdot \lVert b \rVert 의 형태로 표현할 수 없다.[8]

이렇게 증명되는 것이 당연한 것이, 벡터곱은 애초에 조시어 깁스사원수의 곱셈으로 해결하던 문제들의 풀이 과정이 너무 귀찮고 벡터 부분/스칼라 부분만 필요한 경우가 너무 많다고 생각하여 사원수 곱셈의 벡터 부분만 때어서 정리하여 만들어 진 것이 벡터곱이다.

2.1. 정의[편집]

3차원 유클리드 공간의 벡터 x=(x1,x2,x3)\mathbf{x}=\left( x_1 , x_2 , x_3 \right)y=(y1,y2,y3)\mathbf{y}=\left( y_1 , y_2 , y_3 \right)의 벡터곱 x×y\mathbf{x} \times \mathbf{y}는 다음과 같이 정의된다.
x×y=(x2y3x3y2,x3y1x1y3,x1y2x2y1) \mathbf{x} \times \mathbf{y} = \left( x_2 y_3 - x_3 y_2 , x_3 y_1 - x_1 y_3 , x_1 y_2 -x_2 y_1 \right)

행렬식을 이용하여 다음과 같이 표현할 수도 있다.
x×y=det[ijkx1x2x3y1y2y3]\mathbf{x}\times\mathbf{y}=\det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix}

여기서 i=(1,0,0),j=(0,1,0),k=(0,0,1)\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)는 유클리드 공간의 표준기저이다.

유도과정은 여럿 있으며, 사원수의 허수부를 이용한 유도과정은 다음과 같다.[10]

x=x1i+x2j+x3k\mathbf{x}=x_1i+x_2j+x_3k
y=y1i+y2j+y3k\mathbf{y}=y_1i+y_2j+y_3k
xy=x1y1i2+x2y2j2+x3y3k2+x1y2ij+x1y3ik+x2y1ji+x2y3jk+x3y1ki+x3y2kj\mathbf{xy}=x_1y_1i^2+x_2y_2j^2+x_3y_3k^2+x_1y_2ij+x_1y_3ik+x_2y_1ji+x_2y_3jk+x_3y_1ki+x_3y_2kj
ij=k,jk=i,ki=j,ji=k,kj=i,ik=j,i2=j2=k2=1ij=k, jk=i, ki=j, ji=-k, kj=-i, ik=-j, i^2=j^2=k^2=-1이므로 정리하면
xy=(x1y1+x2y2+x3y3)+(x2y3x3y2)i+(x3y1x1y3)j+(x1y2x2y1)k\mathbf{xy}=-\left(x_1y_1+x_2y_2+x_3y_3\right)+\left(x_2 y_3-x_3 y_2\right)i+\left(x_3 y_1-x_1 y_3\right)j+\left(x_1 y_2 -x_2 y_1\right)k
실수부와 허수부를 분리하면, (x1y1+x2y2+x3y3)-\left(x_1y_1+x_2y_2+x_3y_3\right)(x2y3x3y2)i+(x3y1x1y3)j+(x1y2x2y1)k\left(x_2 y_3-x_3 y_2\right)i+\left(x_3 y_1-x_1 y_3\right)j+\left(x_1 y_2 -x_2 y_1\right)k
즉, xy=xy+x×y\mathbf{xy}=-\mathbf{x\cdot y}+\mathbf{x\times y}가 된다.
필요한 것은 허수부이므로, x×y=(x2y3x3y2)i+(x3y1x1y3)j+(x1y2x2y1)k\mathbf{x\times y}=\left(x_2 y_3-x_3 y_2\right)i+\left(x_3 y_1-x_1 y_3\right)j+\left(x_1 y_2 -x_2 y_1\right)k이다.
※양쪽에 노름을 구하게 되면 같아야 하는데, 이를 통해 외적의 노름값을 구할 수 있다.
xy=xy+x×y\lVert\mathbf{xy}\rVert=\lVert-\mathbf{x\cdot y}+\mathbf{x\times y}\rVert
xy-\mathbf{x\cdot y}가 실수부, x×y\mathbf{x\times y}가 허수부이므로, 합의 노름값의 제곱은 실수부의 제곱과 허수부의 제곱을 합한 값이 된다.
xy2=xy+x×y2=xy2+x×y2\lVert\mathbf{xy}\rVert^{2}=\lVert-\mathbf{x\cdot y}+\mathbf{x\times y}\rVert^{2}=\lVert-\mathbf{x\cdot y}\rVert^{2}+\lVert\mathbf{x\times y}\rVert^{2}
xy2=x2y2cos2θ\lVert-\mathbf{x\cdot y}\rVert^{2}=\lVert\mathbf{x}\rVert^{2}\lVert\mathbf{y}\rVert^{2}\cos^{2}{\theta}이므로,
x×y2=x2y2(1cos2θ)=x2y2sin2θ\lVert\mathbf{x\times y}\rVert^{2}=\lVert\mathbf{x}\rVert^{2}\lVert\mathbf{y}\rVert^{2}\left(1-\cos^{2}{\theta}\right)=\lVert\mathbf{x}\rVert^{2}\lVert\mathbf{y}\rVert^{2}\sin^{2}{\theta}
즉, x×y=xysinθ\lVert\mathbf{x\times y}\rVert=\lVert\mathbf{xy}\rVert\lVert\sin{\theta}\rVert
마찬가지로 팔원수 곱셈표를 이용하여 정리하여 7차원 벡터곱을 정의할 수도 있다.
팔원수 곱셈표
a\ba\backslash b
e1e_{1}
e2e_{2}
e3e_{3}
e4e_{4}
e5e_{5}
e6e_{6}
e7e_{7}
e1e_{1}
1-1
e4e_{4}
e7e_{7}
e2-e_{2}
e6e_{6}
e5-e_{5}
e3-e_{3}
e2e_{2}
e4-e_{4}
1-1
e5e_{5}
e1e_{1}
e3-e_{3}
e7e_{7}
e6-e_{6}
e3e_{3}
e7-e_{7}
e5-e_{5}
1-1
e6e_{6}
e2e_{2}
e4-e_{4}
e1e_{1}
e4e_{4}
e2e_{2}
e1-e_{1}
e6-e_{6}
1-1
e7e_{7}
e3e_{3}
e5-e_{5}
e5e_{5}
e6-e_{6}
e3e_{3}
e2-e_{2}
e7-e_{7}
1-1
e1e_{1}
e4e_{4}
e6e_{6}
e5e_{5}
e7-e_{7}
e4e_{4}
e3-e_{3}
e1-e_{1}
1-1
e2e_{2}
e7e_{7}
e3e_{3}
e6e_{6}
e1-e_{1}
e5e_{5}
e4-e_{4}
e2-e_{2}
1-1

3. 외적[편집]

[ 펼치기 · 접기 ]
선형대수학의 대수적 구조
선형대수학의 이론
기본 대상
선형 연산자
기본 개념
선형 시스템
주요 정리
기타
벡터공간의 분해
벡터의 연산
내적공간
다중선형대수
선형대수학에서의 외적(Outer product)은 두 벡터 간의 텐서곱을 뜻한다. 앞의 벡터곱과는 달리 결괏값은 행렬이 된다. 외적 uv u \otimes v 는 열벡터 uu와 행벡터 vv켤레곱으로 표현된다.(다시 말해 uv u v^{\ast} ) 두 벡터 uu, vv가 차원이 다를 때에도 정의되며, 행렬의 원소 xij x_{ij} 에 대해 xij=uivj x_{ij} = u_i \overline{v_j} 의 관계식이 성립한다. 다시 말해
  • uv=uv=[u1u2um][v1v2vn]=[u1v1u1v2u1vnu2v1u2v2u2vnumv1umv2umvn]\mathbf{u} \otimes \mathbf{v} = \mathbf{u} \mathbf{v}^{\ast} = \begin{bmatrix}u_1 \\ u_2 \\ \vdots \\ u_m\end{bmatrix}\overline{\begin{bmatrix}v_1 & v_2 & \cdots & v_n \end{bmatrix}} = \begin{bmatrix}u_1\overline{v_1} & u_1\overline{v_2} & \cdots & u_1\overline{v_n} \\ u_2\overline{v_1} & u_2\overline{v_2} & \cdots & u_2\overline{v_n} \\ \vdots & \vdots & \ddots & \vdots \\ u_m\overline{v_1} & u_m\overline{v_2} & \cdots & u_m\overline{v_n} \end{bmatrix}

자세히 보면, 대각합(trace)내적임을 알 수 있다.

[1] 실수를 이용해 정의한 0차원 벡터곱과 복소수를 이용해 정의한 1차원 벡터곱은 결과가 항상 영벡터이기에 쓸 이유가 없다.[2] 팔원수에서 곱셈의 결합법칙이 성립하지 않게 된다. 다만, 팔원수도 실수체의 교대 대수이기 때문에, x(xy)=x2y,(xy)y=xy2x\left(xy\right)=x^2y, \left(xy\right)y=xy^2은 성립한다.[3] 오일러가 4개의 수에 대한 네 제곱수 항등식을, 데겐이 8개의 수에 대한 여덟 제곱수 항등식을 발견했고, 이는 후에 사원수와 팔원수에 대한 노름과 연관 있다는 사실이 밝혀졌다.[4] n개 제곱수 항등식은 k=1nak2k=1nbk2\displaystyle{\sum_{k=1}^{n} a_{k}^{2} \sum_{k=1}^{n} b_{k}^{2}}을 n개의 제곱의 합으로 분리하여 표기할 수 있다는 것을 의미한다. 수학적으로 이 항등식은 n=1, 2, 4, 8일때만 존재한다는게 밝혀져 있다.[5] 1 제곱수 항등식은 a2b2=(ab)2a^2b^2=\left(ab\right)^2
2 제곱수 항등식은 (a12+a22)(b12+b22)=(a1b1a2b2)2+(a1b2+a2b1)2\left(a_{1}^2+a_{2}^2\right)\left(b_{1}^2+b_{2}^2\right)=\left(a_1b_1-a_2b_2\right)^{2}+\left(a_1b_2+a_2b_1\right)^{2}
1 제곱수 항등식은 실수의 절대값 곱[6]을 고려하면 항상 성립하며, 2 제곱수 항등식은 복소수의 노름 곱[7]을 고려하면 성립함을 알 수 있다. 마찬가지로 네 제곱수 항등식은 사원수의 노름곱, 여덟 제곱수 항등식은 팔원수의 노름곱에서 유도할 수 있다.
[6] ab=ab\lVert a\cdot b \rVert = \lVert a \rVert \cdot \lVert b \rVert [7] (a1+a2i)(b1+b2i)=a1+a2ib1+b2i\lVert \left(a_1+a_2i\right)\cdot\left(b_1+b_2i\right) \rVert =\lVert a_1+a_2i \rVert \cdot \lVert b_1+b_2i \rVert [8] 사원수 이상의 수 체계에서는 각 허수성분을 대응되는 차원의 공간좌표 단위벡터성분으로 표현할 수 있는데[9] 벡터를 대응되는 허수좌표로 바꾸어 곱을 계산하면 실수부는 스칼라곱의 부호를 반전시키고, 허수부는 벡터곱의 형태로 주어지게 된다. 그런데, ab=ab \lVert a\cdot b \rVert = \lVert a \rVert\cdot \lVert b \rVert 형태의 노름이 보존되지 않기 때문에, 일관된 형태의 공식을 유도할 수 없게 된다.[9] 사원소의 허수단위가 i,j,ki,j,k의 3개이므로 3차원 좌표의 x,y,zx,y,z좌표 단위벡터 단위가 i,j,ki,j,k가 된다. 마찬가지로 팔원수의 허수단위는 e1,e2,e3,e4,e5,e6,e7e_1,e_2,e_3,e_4,e_5,e_6,e_7의 7개 성분으로 구성되어 있으므로 마찬가지 사고방식으로 7차원 좌표에 대응되게 된다.[10] 실수부를 넣어도 되기는 하는데, 식이 상당히 복잡해진다. 실수부를 0으로 뒀을 때가 가장 깔끔하게 정리된다.

Contents are available under the CC BY-NC-SA 2.0 KR; There could be exceptions if specified or metioned. theseed-skin-buma by LiteHell, the seed engine by theseed.io